3715 independent reflections

 $R_{\rm int} = 0.062$

2456 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Methyl-1,2-diphenylcyclobuteno-[3,4-a]naphthalene-2,3-dicarboximide

Qingjian Liu

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: liugj@sdnu.edu.cn

Received 1 May 2007; accepted 8 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.058; wR factor = 0.123; data-to-parameter ratio = 13.7.

The title compound, $C_{27}H_{19}NO_2$, is the product of a photochemical reaction between N-methylnaphthalene-2,3dicarboximide and diphenylacetylene. The cyclobutene ring in the molecule is almost perpendicular to the plane of the dihydronaphthalimide system; the interplanar angle between the cyclobutene ring and the plane through the two sixmembered rings of the naphthalimide system is 70.66 $(9)^{\circ}$. The interplanar angle between the two phenyl substituents on the cyclobutene ring is $42.47 (8)^{\circ}$.

Related literature

For information on the photochemistry of naphthalenedicarboximides with alkynes see Liu et al. (2006) and for related structures see Liu et al. (2003, 2006).

Experimental

Crystal data

C ₂₇ H ₁₉ NO ₂	V = 1999.8 (7) Å ³
$M_r = 389.43$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.763 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 7.9925 (15) Å	T = 298 (2) K
c = 23.438 (5) Å	$0.28 \times 0.22 \times 0.08 \text{ mm}$
$\beta = 97.326 \ (3)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: none 10516 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ 272 parameters $wR(F^2) = 0.123$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^-$ S = 1.01 $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ 3715 reflections

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The author gratefully acknowledges Professor Jianhua Xu of Nanjing University for his help.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2314).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Liu, Q.-J., Li, Y.-Z., Shi, D.-Q. & Xu, J.-H. (2003). Acta Cryst. C59, 036-037. Liu, Q.-J., Shen, Y.-M., An, H.-Y., Grampp, G., Landgraf, S. & Xu, J.-H. (2006). Tetrahedron, 62, 1131-1138.

Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, o2901 [doi:10.1107/S1600536807022568]

N-Methyl-1,2-diphenylcyclobuteno[3,4-a]naphthalene-2,3-dicarboximide

Q.-J. Liu

Comment

In the studies of photochemistry of naphthalenedicarboximides with alkynes, it has been found that the photoinduced cycloadditions of *N*-methyl-1,8-naphthalenedicarboximides (NI18) with alkynes followed the pathway of NI18 with alkenes (Liu *et al.*, 2006), but that is not the case for *N*-methylnaphthalene-2,3-dicarboximide (NI23). UV irradiation of NI23 in the presence of diphenylacetylene in benzene solution resulted in the novel adduct (I) and its structure is reported here (Figure 1).

The bond lengths and angles in (I) show normal values except for the geometry of the cyclobutene ring (Table 1). The C20—C21 bond length of 1.345 (3)Å is nearly the same as that in 4-methyl-1,2-diphenylbenzo[de]cyclobut[i]isoquinoline-3,5(2H)-dione(1.346 (3) Å) (Liu *et al.*, 2006), but is longer than those of 4,5,9,10-tetrahydro-4- methyl-2-phenyl-9,10-epoxy-3H,10aH-cyclobuta[benzo[2,3,4-de]- isoquinoline-3,5-dione (1.324 (2) Å) (Liu *et al.*, 2003), Such elongation is considered to be caused by the steric effect of the bulky phenyl substituents on C20 and C21, respectively. The cyclobutene ring in the molecule is almost perpendicular to the plane of dihydronaphthalimide, the interplanar angle between the cyclobutene ring and the plane through the two six membered rings of the naphthalimide is 70.66 (9). The interplanar angle between the two benzene substituents on the cyclobutene ring is 42.47 (8).

Experimental

The title compound, (I), was prepared by irradiation of a benzene (150 ml) solution of *N*-methylnaphthalene-2,3-dicarboximide (633 mg, 3.0 mmol) with diphenylacetylene (1.068 g, 6 mmol) with UV light of wavelength longer than 300 nm purged with nitrogen, and isolated by flash column chromatography on silica gel, eluting with petroleum-ethyl acetate (4:1 v/v). Single crystals (m.p. 505–506 K) suitable for X-ray diffraction were obtained by recrystallization from ethanol-ethyl acetate solution (1:95 v/v).

Refinement

Hydrogen atoms were placed in geometrically idealized positions and refined using a riding model with d (C—H) = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic 0.98 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH and 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ atoms.

Figures

Fig. 1. The structure of (I) with the atom-numbering scheme and ellipsoids drawn at the 30% probability level.

N-Methyl-1,2-diphenylcyclobuteno[3,4-a]naphthalene-2,3-dicarboximide

Crystal data	
C ₂₇ H ₁₉ NO ₂	$F_{000} = 816$
$M_r = 389.43$	$D_{\rm x} = 1.293 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 505 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.763 (2) Å	Cell parameters from 1602 reflections
<i>b</i> = 7.9925 (15) Å	$\theta = 2.4 - 20.9^{\circ}$
c = 23.438 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 97.326 \ (3)^{\circ}$	T = 298 (2) K
V = 1999.8 (7) Å ³	Plate, colourless
Z = 4	$0.28 \times 0.22 \times 0.08 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2456 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.062$
Monochromator: graphite	$\theta_{\text{max}} = 25.5^{\circ}$
T = 298(2) K	$\theta_{\min} = 1.9^{\circ}$
φ and ω scans	$h = -11 \rightarrow 13$
Absorption correction: none	$k = -9 \rightarrow 7$
10516 measured reflections	$l = -28 \rightarrow 24$
3715 independent reflections	

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.058$

 $wR(F^2) = 0.123$ S = 1.01

3715 reflections

272 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0426P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e} \text{ Å}^{-3}$ Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal estimating esds involving l.s.planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of F^2 >2sigma (F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5270 (3)	0.7812 (4)	0.55850 (12)	0.0659 (9)
H1A	0.5237	0.7875	0.5174	0.099*
H1B	0.6028	0.7257	0.5743	0.099*
H1C	0.5256	0.8921	0.5741	0.099*
C2	0.4147 (2)	0.5119 (3)	0.57395 (9)	0.0415 (6)
C3	0.2884 (2)	0.4690 (3)	0.58640 (9)	0.0362 (6)
C4	0.2254 (2)	0.3278 (3)	0.57293 (9)	0.0417 (6)
H4	0.2692	0.2324	0.5647	0.050*
C5	0.0900 (2)	0.3192 (3)	0.57082 (9)	0.0406 (6)
C6	0.0276 (3)	0.1680 (3)	0.55931 (10)	0.0528 (7)
Н6	0.0738	0.0705	0.5568	0.063*
C7	-0.1008 (3)	0.1601 (4)	0.55158 (11)	0.0608 (8)
H7	-0.1408	0.0576	0.5448	0.073*
C8	-0.1705 (3)	0.3042 (4)	0.55384 (11)	0.0577 (8)
H8	-0.2576	0.3000	0.5480	0.069*
C9	-0.1089 (2)	0.4554 (4)	0.56487 (10)	0.0501 (7)
Н9	-0.1560	0.5526	0.5658	0.060*
C10	0.0197 (2)	0.4662 (3)	0.57446 (9)	0.0389 (6)
C11	0.0817 (2)	0.6310 (3)	0.59191 (10)	0.0384 (6)
H11	0.0499	0.7255	0.5677	0.046*
C12	0.2275 (2)	0.6241 (3)	0.60469 (9)	0.0361 (6)
C13	0.3101 (2)	0.7618 (3)	0.58514 (10)	0.0428 (6)
C14	0.4107 (2)	0.5646 (3)	0.72463 (10)	0.0410 (6)
H14	0.4304	0.5042	0.6931	0.049*
C15	0.4926 (2)	0.5629 (3)	0.77487 (11)	0.0477 (7)
H15	0.5656	0.4997	0.7773	0.057*
C16	0.4659 (2)	0.6550 (3)	0.82139 (11)	0.0506 (7)
H16	0.5206	0.6538	0.8555	0.061*
C17	0.3578 (2)	0.7489 (3)	0.81730 (11)	0.0496 (7)
H17	0.3406	0.8131	0.8484	0.060*
C18	0.2754 (2)	0.7483 (3)	0.76758 (10)	0.0435 (6)
H18	0.2023	0.8114	0.7655	0.052*
C19	0.2998 (2)	0.6539 (3)	0.71998 (9)	0.0342 (6)
C20	0.2084 (2)	0.6472 (3)	0.66827 (10)	0.0360 (6)

C21	0.0834 (2)	0.6619 (3)	0.65621 (10)	0.0373 (6)
C22	-0.0208 (2)	0.6824 (3)	0.69000 (10)	0.0386 (6)
C23	-0.0146 (2)	0.6137 (3)	0.74466 (11)	0.0475 (7)
H23	0.0551	0.5512	0.7594	0.057*
C24	-0.1108 (3)	0.6373 (3)	0.77724 (12)	0.0585 (8)
H24	-0.1054	0.5916	0.8140	0.070*
C25	-0.2141 (3)	0.7276 (4)	0.75599 (15)	0.0628 (9)
H25	-0.2781	0.7451	0.7785	0.075*
C26	-0.2234 (3)	0.7922 (4)	0.70151 (15)	0.0635 (9)
H26	-0.2948	0.8510	0.6866	0.076*
C27	-0.1271 (2)	0.7703 (3)	0.66871 (12)	0.0521 (7)
H27	-0.1338	0.8152	0.6318	0.062*
N1	0.41972 (19)	0.6876 (3)	0.57308 (8)	0.0442 (5)
01	0.50087 (17)	0.4229 (2)	0.56464 (7)	0.0553 (5)
O2	0.28991 (17)	0.9106 (2)	0.58275 (8)	0.0599 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.056 (2)	0.076 (2)	0.068 (2)	-0.0136 (16)	0.0180 (15)	-0.0095 (16)
C2	0.0456 (17)	0.0540 (18)	0.0244 (13)	0.0114 (13)	0.0026 (11)	0.0012 (12)
C3	0.0397 (15)	0.0406 (15)	0.0282 (13)	0.0099 (12)	0.0038 (11)	0.0018 (11)
C4	0.0517 (18)	0.0376 (15)	0.0352 (14)	0.0127 (13)	0.0033 (12)	0.0013 (12)
C5	0.0518 (17)	0.0427 (16)	0.0270 (13)	0.0008 (13)	0.0044 (11)	0.0015 (12)
C6	0.066 (2)	0.0465 (17)	0.0441 (17)	-0.0019 (15)	0.0011 (14)	-0.0001 (13)
C7	0.074 (2)	0.062 (2)	0.0461 (17)	-0.0197 (17)	0.0068 (15)	-0.0055 (15)
C8	0.0507 (18)	0.082 (2)	0.0396 (16)	-0.0136 (17)	0.0035 (13)	-0.0123 (16)
C9	0.0482 (18)	0.066 (2)	0.0352 (15)	0.0011 (14)	0.0032 (12)	-0.0057 (14)
C10	0.0445 (16)	0.0473 (16)	0.0247 (13)	0.0014 (13)	0.0037 (11)	-0.0009 (11)
C11	0.0418 (16)	0.0352 (15)	0.0369 (14)	0.0096 (11)	0.0000 (11)	0.0009 (11)
C12	0.0393 (15)	0.0360 (14)	0.0333 (14)	0.0066 (11)	0.0064 (11)	0.0002 (11)
C13	0.0472 (17)	0.0475 (17)	0.0331 (15)	0.0040 (14)	0.0025 (12)	-0.0012 (13)
C14	0.0384 (16)	0.0432 (15)	0.0424 (15)	0.0003 (12)	0.0084 (12)	-0.0016 (12)
C15	0.0352 (16)	0.0543 (18)	0.0522 (17)	-0.0018 (13)	-0.0001 (13)	0.0018 (14)
C16	0.0435 (17)	0.0651 (19)	0.0406 (16)	-0.0135 (14)	-0.0051 (12)	0.0041 (14)
C17	0.0517 (18)	0.0574 (18)	0.0405 (16)	-0.0093 (14)	0.0084 (13)	-0.0111 (13)
C18	0.0406 (16)	0.0454 (15)	0.0451 (16)	0.0014 (12)	0.0082 (12)	-0.0047 (13)
C19	0.0350 (14)	0.0331 (14)	0.0354 (14)	-0.0008 (11)	0.0077 (11)	0.0003 (11)
C20	0.0385 (15)	0.0330 (14)	0.0367 (14)	0.0056 (11)	0.0050 (11)	-0.0019 (11)
C21	0.0411 (16)	0.0328 (14)	0.0378 (14)	0.0070 (11)	0.0039 (11)	-0.0013 (11)
C22	0.0358 (15)	0.0355 (14)	0.0439 (16)	0.0039 (11)	0.0030 (11)	-0.0107 (12)
C23	0.0424 (17)	0.0458 (17)	0.0556 (18)	0.0050 (12)	0.0110 (13)	0.0006 (14)
C24	0.063 (2)	0.0551 (19)	0.0621 (19)	-0.0040 (15)	0.0253 (16)	-0.0019 (15)
C25	0.051 (2)	0.058 (2)	0.086 (3)	-0.0054 (16)	0.0312 (17)	-0.0236 (18)
C26	0.0395 (18)	0.067 (2)	0.083 (2)	0.0123 (14)	0.0045 (16)	-0.0260 (18)
C27	0.0470 (18)	0.0579 (18)	0.0501 (17)	0.0131 (14)	0.0016 (13)	-0.0109 (14)
N1	0.0416 (13)	0.0496 (14)	0.0422 (13)	-0.0013 (11)	0.0084 (10)	-0.0006 (10)
01	0.0509 (12)	0.0680 (13)	0.0486 (12)	0.0213 (10)	0.0125 (9)	0.0012 (9)

02	0.0661 (14)	0.0384 (11)	0.0755 (14)	0.0037 (10)	0.0095 (10)	0.0017 (10)
Geometric param	neters (Å, °)					
C1—N1		1.453 (3)	C13–	-02	1	.208 (3)
C1—H1A		0.9600	C13–	-N1	1	.382 (3)
C1—H1B		0.9600	C14-	-C15	1	.378 (3)
C1—H1C		0.9600	C14-	-C19	1	.383 (3)
C2—O1		1.210 (3)	C14-	-H14	0	.9300
C2—N1		1.406 (3)	C15–	-C16	1	.376 (3)
C2—C3		1.467 (3)	C15–	-H15	0	.9300
C3—C4		1.333 (3)	C16–	-C17	1	.378 (3)
C3—C12		1.491 (3)	C16–	-H16	0	.9300
C4—C5		1.453 (3)	C17–	-C18	1	.371 (3)
C4—H4		0.9300	C17–	-H17	0	.9300
C5—C6		1.392 (3)	C18–	-C19	1	.399 (3)
C5—C10		1.407 (3)	C18–	-H18	0	.9300
С6—С7		1.372 (4)	C19–	-C20	1	.461 (3)
С6—Н6		0.9300	C20–	-C21	1	.345 (3)
С7—С8		1.379 (4)	C21-	-C22	1	.462 (3)
С7—Н7		0.9300	C22–	-C27	1	.381 (3)
С8—С9		1.387 (3)	C22–	-C23	1	.388 (3)
C8—H8		0.9300	C23–	-C24	1	.376 (3)
C9—C10		1.376 (3)	C23–	-H23	0	.9300
С9—Н9		0.9300	C24–	-C25	1	.365 (4)
C10-C11		1.509 (3)	C24–	-H24	0	.9300
C11—C21		1.525 (3)	C25-	-C26	1	.369 (4)
C11—C12		1.560 (3)	C25-	-H25	0	.9300
C11—H11		0.9800	C26–	-C27	1	.378 (4)
C12—C13		1.522 (3)	C26–	-H26	0	.9300
C12—C20		1.541 (3)	C27–	-H27	0	.9300
N1—C1—H1A		109.5	N1—	C13—C12	1	07.3 (2)
N1—C1—H1B		109.5	C15-	-C14C19	1	21.6 (2)
H1A-C1-H1B		109.5	C15-	-C14—H14	1	19.2
N1—C1—H1C		109.5	C19–	-C14—H14	1	19.2
H1A—C1—H1C		109.5	C16–	-C15-C14	1	19.8 (2)
H1B—C1—H1C		109.5	C16–	-C15—H15	1	20.1
O1—C2—N1		123.5 (2)	C14-	-C15—H15	1	20.1
O1—C2—C3		130.5 (3)	C15-	-C16C17	1	19.8 (2)
N1—C2—C3		105.9 (2)	C15-	-C16—H16	1	20.1
C4—C3—C2		127.4 (2)	C17–	-C16—H16	1	20.1
C4—C3—C12		122.9 (2)	C18–	-C17C16	1	20.4 (2)
C2—C3—C12		108.4 (2)	C18–	-C17—H17	1	19.8
C3—C4—C5		121.7 (2)	C16–	-C17—H17	1	19.8
C3—C4—H4		119.1	C17–	-C18C19	1	20.8 (2)
С5—С4—Н4		119.1	C17–	-C18—H18	1	19.6
C6—C5—C10		119.1 (3)	C19–	-C18—H18	1	19.6
C6—C5—C4		120.3 (2)	C14-	-C19C18	1	17.6 (2)
C10—C5—C4		120.2 (2)	C14-	-C19C20	1	21.9 (2)

C7—C6—C5	121.2 (3)	C18—C19—C20	120.5 (2)
С7—С6—Н6	119.4	C21—C20—C19	136.1 (2)
С5—С6—Н6	119.4	C21—C20—C12	93.44 (19)
C6—C7—C8	120.0 (3)	C19—C20—C12	130.4 (2)
С6—С7—Н7	120.0	C20—C21—C22	135.4 (2)
С8—С7—Н7	120.0	C20—C21—C11	94.53 (19)
С7—С8—С9	119.0 (3)	C22—C21—C11	129.8 (2)
С7—С8—Н8	120.5	C27—C22—C23	118.3 (2)
С9—С8—Н8	120.5	C27—C22—C21	121.3 (2)
С10—С9—С8	122.2 (3)	C23—C22—C21	120.4 (2)
С10—С9—Н9	118.9	C24—C23—C22	120.5 (2)
С8—С9—Н9	118.9	С24—С23—Н23	119.8
C9—C10—C5	118.4 (2)	С22—С23—Н23	119.8
C9—C10—C11	120.0 (2)	C25—C24—C23	120.4 (3)
C5-C10-C11	121.5 (2)	C25—C24—H24	119.8
C10-C11-C21	111.00 (19)	C23—C24—H24	119.8
C10—C11—C12	114.87 (19)	C24—C25—C26	119.9 (3)
C21—C11—C12	86.05 (17)	С24—С25—Н25	120.0
C10—C11—H11	114.0	C26—C25—H25	120.0
C21—C11—H11	114.0	C25—C26—C27	120.1 (3)
C12—C11—H11	114.0	С25—С26—Н26	120.0
C3—C12—C13	102.7 (2)	С27—С26—Н26	120.0
C3—C12—C20	119.68 (19)	C26—C27—C22	120.7 (3)
C13—C12—C20	111.06 (19)	С26—С27—Н27	119.6
C3—C12—C11	116.3 (2)	С22—С27—Н27	119.6
C13—C12—C11	121.9 (2)	C13—N1—C2	113.0 (2)
C20—C12—C11	85.83 (17)	C13—N1—C1	123.5 (2)
O2—C13—N1	124.5 (2)	C2—N1—C1	123.4 (2)
O2—C13—C12	128.1 (2)		
O1—C2—C3—C4	-23.2 (4)	C16-C17-C18-C19	-0.6 (4)
N1—C2—C3—C4	155.4 (2)	C15-C14-C19-C18	2.4 (3)
O1—C2—C3—C12	170.0 (2)	C15-C14-C19-C20	-175.7 (2)
N1—C2—C3—C12	-11.4 (2)	C17—C18—C19—C14	-1.3 (3)
C2—C3—C4—C5	-160.1 (2)	C17—C18—C19—C20	176.8 (2)
C12—C3—C4—C5	4.9 (3)	C14—C19—C20—C21	150.3 (3)
C3—C4—C5—C6	-176.9 (2)	C18-C19-C20-C21	-27.7 (4)
C3—C4—C5—C10	9.7 (3)	C14—C19—C20—C12	-31.9 (4)
C10-C5-C6-C7	-0.1 (4)	C18—C19—C20—C12	150.1 (2)
C4—C5—C6—C7	-173.6 (2)	C3—C12—C20—C21	-121.1 (2)
C5—C6—C7—C8	1.5 (4)	C13—C12—C20—C21	119.6 (2)
C6—C7—C8—C9	-1.0 (4)	C11-C12-C20-C21	-3.11 (19)
C7—C8—C9—C10	-0.9 (4)	C3-C12-C20-C19	60.5 (3)
C8—C9—C10—C5	2.3 (4)	C13—C12—C20—C19	-58.9 (3)
C8—C9—C10—C11	-174.1 (2)	C11—C12—C20—C19	178.5 (2)
C6—C5—C10—C9	-1.8 (3)	C19—C20—C21—C22	-4.2 (5)
C4—C5—C10—C9	171.7 (2)	C12—C20—C21—C22	177.5 (3)
C6—C5—C10—C11	174.6 (2)	C19—C20—C21—C11	-178.5 (3)
C4—C5—C10—C11	-11.9 (3)	C12—C20—C21—C11	3.18 (19)
C9-C10-C11-C21	81.3 (3)	C10-C11-C21-C20	112.0 (2)

C5-C10-C11-C21	-95.0 (2)	C12—C11—C21—C20	-3.14 (19)
C9—C10—C11—C12	176.8 (2)	C10-C11-C21-C22	-62.8 (3)
C5-C10-C11-C12	0.5 (3)	C12—C11—C21—C22	-177.9 (2)
C4—C3—C12—C13	-151.6 (2)	C20-C21-C22-C27	148.6 (3)
C2-C3-C12-C13	16.0 (2)	C11—C21—C22—C27	-38.8 (4)
C4—C3—C12—C20	84.9 (3)	C20-C21-C22-C23	-31.2 (4)
C2-C3-C12-C20	-107.6 (2)	C11—C21—C22—C23	141.4 (2)
C4—C3—C12—C11	-15.9 (3)	C27—C22—C23—C24	-1.9 (4)
C2-C3-C12-C11	151.61 (19)	C21—C22—C23—C24	177.9 (2)
C10-C11-C12-C3	12.6 (3)	C22—C23—C24—C25	0.6 (4)
C21—C11—C12—C3	123.9 (2)	C23—C24—C25—C26	1.3 (4)
C10-C11-C12-C13	139.1 (2)	C24—C25—C26—C27	-1.8 (4)
C21—C11—C12—C13	-109.5 (2)	C25—C26—C27—C22	0.4 (4)
C10-C11-C12-C20	-108.6 (2)	C23—C22—C27—C26	1.4 (4)
C21—C11—C12—C20	2.74 (16)	C21—C22—C27—C26	-178.4 (2)
C3—C12—C13—O2	168.5 (2)	O2—C13—N1—C2	-174.5 (2)
C20-C12-C13-O2	-62.4 (3)	C12-C13-N1-C2	8.8 (3)
C11—C12—C13—O2	36.1 (4)	O2-C13-N1-C1	3.0 (4)
C3—C12—C13—N1	-15.0 (2)	C12—C13—N1—C1	-173.8 (2)
C20-C12-C13-N1	114.1 (2)	O1—C2—N1—C13	-179.9 (2)
C11—C12—C13—N1	-147.4 (2)	C3—C2—N1—C13	1.5 (3)
C19—C14—C15—C16	-1.6 (4)	O1—C2—N1—C1	2.7 (4)
C14—C15—C16—C17	-0.3 (4)	C3—C2—N1—C1	-175.9 (2)
C15—C16—C17—C18	1.4 (4)		

Fig. 1

